Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37888626

RESUMO

Calamus tenuis is a shrub species distributed across South Asia. It grows well in diversified habitats and tends to dominate plants in the surrounding environment. The phytotoxicity of C. tenuis and the action of its phytochemicals against other plant species could explain its dominant behavior. Compounds with phytotoxic activity are in high demand as prospective sources of ecofriendly bioherbicides. Therefore, we investigated the phytotoxicity of C. tenuis. Aqueous methanol extracts of this plant species significantly limited the growth of four test plant species, two monocots (barnyard grass and timothy), and two dicots (alfalfa and cress), in a dose- and species-dependent manner. Bio-directed chromatographic isolation of the C. tenuis extracts yielded two major active substances: a novel compound, calamulactone {(S)-methyl 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoate}, and 3-oxo-α-ionone. Both of the identified compounds exerted strong growth inhibitory effects on cress and timothy seedlings. The concentrations of 3-oxo-α-ionone and calamulactone required to limit the growth of the cress seedlings by 50% (I50) were 281.6-199.5 and 141.1-105.5 µM, respectively, indicating that the effect of calamulactone was stronger with lower I50 values. Similarly, the seedlings of timothy also showed a considerably higher sensitivity to calamulactone (I50: 40.5-84.4 µM) than to 3-oxo-α-ionone (I50: 107.8-144.7 µM). The findings indicated that the leaves of C. tenuis have marked growth-inhibitory potential, and could affect surrounding plants to exert dominance over the surrounding plant community. Moreover, the two identified phytotoxic substances might play a key role in the phytotoxicity of C. tenuis, and could be a template for bioherbicide development. This paper was the first to report calamulactone and its phytotoxicity.


Assuntos
Alcaloides , Calamus , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Estudos Prospectivos , Plântula , Plantas
2.
Environ Sci Pollut Res Int ; 30(32): 78507-78520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270757

RESUMO

Copper (Cu), an essential micronutrient, can generate reactive oxygen species (ROS) at its supra-optimal level in living cells as a transition metal, thus producing oxidative stress in plants. Therefore, protecting plants from Cu-induced oxidative stress via the exogenous application of chemical substances, particularly L-glutamic acid (L-Glu), could be a viable strategy for mitigating the toxicity of Cu. The aim of our present study was to investigate how ʟ-Glu protects lentil seedlings from oxidative stress produced by toxic Cu and allows them to survive under Cu toxicity. The results exhibited that when lentil seedlings were exposed to excessive Cu, their growth was inhibited and their biomass decreased due to an increase in Cu accumulation and translocation to the root, shoot, and leaves. Exposure to toxic Cu also depleted photosynthetic pigments, imbalanced water content, and other essential nutrients, increased oxidative stress, and reduced enzymatic and non-enzymatic antioxidants. However, pre-treatment of ʟ-Glu improved the phenotypic appearance of lentil seedlings, which was distinctly evidenced by higher biomass production, maintenance of water balance, and an increase in photosynthetic pigments when exposed to toxic Cu. ʟ-Glu also protected the seedlings from Cu-induced oxidative stress by reducing the oxidative stress marker, specifically by the efficient action of enzymatic and non-enzymatic antioxidants, particularly ascorbate, catalase, monodehydroascorbate, and glutathione peroxidase and maintaining redox balance. Furthermore, ʟ-Glu assisted in maintaining the homeostasis of Cu and other nutrient in the roots, shoots, and leaves of lentil. Collectively, our results provide evidence of the mechanism of ʟ-Glu-mediated protective role in lentil against Cu toxicity, thus proposed as a potential chemical for managing Cu toxicity not only in lentil but also other plants.


Assuntos
Antioxidantes , Lens (Planta) , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cobre/toxicidade , Lens (Planta)/metabolismo , Ácido Glutâmico , Estresse Oxidativo , Plântula/metabolismo , Nutrientes , Homeostase , Água , Peróxido de Hidrogênio
3.
Environ Pollut ; 308: 119697, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779661

RESUMO

Microplastics are omnipresent in the terrestrial and aquatic environment, and are considered as a potentially serious threat to the biodiversity and ecosystem. Pollution of plastic debris and microplastics in the inland and marine environment has raised concerns in Bangladesh, which is one of the most densely populated countries in the world. This review summarizes the research progress on separation and characterization of microplastics, as well as their occurrence and sources in Bangladesh. Despite of the first total ban on plastic bags in the world introduced back in 2002, microplastics have been ubiquitously detected in the country's inland and marine environment, with the majority of them coming from secondary sources. The microplastics observed in Bangladesh were dominated by fibers, which were derived mainly from textile sources. Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polyvinylchloride (PVC) were the most abundant polymers found for microplastics in the marine and freshwater environment of Bangladesh. Along with the identified research priorities to improve the understanding on the ecotoxicological effect and fate of microplastics, extensive and in-depth studies are required to bridge the knowledge gaps to enable comprehensive risk assessment of microplastic pollution on local ecosystems and human health, while effective management of plastic wastes and their recycling are necessary to alleviate this problem in the country.


Assuntos
Microplásticos , Poluentes Químicos da Água , Bangladesh , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos , Poluentes Químicos da Água/análise
4.
J Environ Sci Health B ; 55(12): 1099-1105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964781

RESUMO

The phytotoxic potential of the leaves and twigs of Schumannianthus dichotomus, discarded in the mat-making industry against four test plants (lettuce (Lactuca sativa L.), rapeseed (Brassica napus L.), foxtail fescue (Vulpia myuros (L.) C.C. Gmel.) and timothy (Phleum pratense L.)) was investigated and found strong phytotoxic activity. An assay-guided fractionation of S. dichotomus extarcts against cress (Lepidium sativum L.) through a series of column chromatography steps yielded two compounds, 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoic acid (ODFO) and (E)-6-hydroxy-2,6-dimethylocta-2,7-dienoic acid (8-carboxylinalool). ODFO and 8-carboxylinalool showed strong phytotoxic activity against cress and timothy. The concentrations required for 50% growth inhibition (I50 value) of the seedlings of cress and timothy were 111.94-128.01 and 36.30-91.75 µM, respectively, for ODFO, but the values were much higher at 315.98-379.13 and 107.92-148.41 µM, respectively, for 8-carboxylinalool, indicating the stronger phytotoxic activity of ODFO. This study is the first to isolate ODFO and 8-carboxylinalool from S. dichotomus and their phytotoxic potential while ODFO is firstly encountered from any natural source. The growth inhibitory activity of the identified compounds may explain their role in the phytotoxic activity of S. dichotomus, which suggests the possible use of its leaves and twigs or its active constituents as natural bioherbicides.


Assuntos
Herbicidas/toxicidade , Marantaceae/química , Marantaceae/toxicidade , Resíduos , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/crescimento & desenvolvimento , /crescimento & desenvolvimento , Estrutura Molecular , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Caules de Planta/química , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Testes de Toxicidade , Resíduos/análise
5.
Plants (Basel) ; 9(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947649

RESUMO

The phytotoxic potential of plants and their constituents against other plants is being increasingly investigated as a possible alternative to synthetic herbicides to control weeds in crop fields. In this study, we explored the phytotoxicity and phytotoxic substances of Schumannianthus dichotomus, a perennial wetland shrub native to Bangladesh, India, and Myanmar. Leaf extracts of S. dichotomus exerted strong phytotoxicity against two dicot species, alfalfa and cress, and two monocot species, barnyard grass and Italian ryegrass. A bioassay-driven purification process yielded two phenolic derivatives, syringic acid and methyl syringate. Both constituents significantly inhibited the growth of cress and Italian ryegrass in a concentration-dependent manner. The concentrations required for 50% growth inhibition (I50 value) of the shoot and root growth of cress were 75.8 and 61.3 µM, respectively, for syringic acid, compared with 43.2 and 31.5 µM, respectively, for methyl syringate. Similarly, to suppress the shoot and root growth of Italian rye grass, a greater amount of syringic acid (I50 = 213.7 and 175.9 µM) was needed than methyl syringate (I50 = 140.4 to 130.8 µM). Methyl syringate showed higher phytotoxic potential than syringic acid, and cress showed higher sensitivity to both substances. This study is the first to report on the phytotoxic potential of S. dichotomus and to identify phytotoxic substances from this plant material.

6.
Plants (Basel) ; 8(9)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450571

RESUMO

Plants are sources of diversified allelopathic substances that can be investigated for use in eco-friendly and efficient herbicides. An aqueous methanol extract from the leaves of Garcinia xanthochymus exhibited strong inhibitory activity against barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), foxtail fescue (Vulpia myuros (L.) C.C.), alfalfa (Medicago sativa L.), and cress (Lepidium sativum L.), and appears to be a promising source of allelopathic substances. Hence, bio-activity guided purification of the extract through a series of column chromatography steps yielded a novel compound assigned as garcienone ((R, E)-5-hydroxy-5-((6S, 9S)-6-methyl-9-(prop-13-en-10-yl) tetrahydrofuran-6-yl) pent-3-en-2-one). Garcienone significantly inhibited the growth of cress at a concentration of 10 µM. The concentrations resulting in 50% growth inhibition (I50) of cress roots and shoots were 120.5 and 156.3 µM, respectively. This report is the first to isolate and identify garcienone and to determine its allelopathic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...